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ABSTRACT

A Study of NO Gamma Bands in the Mesosphere

From Spacelab I

by

Edward H. Erwin, Master of Science

Utah State University, 1985

Major Professor: Dr. Marsha R. Torr
Department: Soil Science and Biometeorology

-. The Imaging Spectrometric Observatory obtained simultaneous

spatial, as well as spectral data of NO in the mesosphere during the

1983 Spacelab 1 mission. The well defined rotational lines of the

1-0 gamma band in the ultraviolet were used to infer atmospheric

temperature profiles. The slant path intensity profiles exhibit

higher intensities than are predicted by a recent model and are in

good agreement with the NO profile obtained in the infrared during

the same Spacelab 1 mission. ( " On *1.
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The Imaging Spectrometric Observatory obtained simultaneous

spatial, as well as spectral data of NO in the mesosphere during the

1983 Spacelab 1 mission. The well defined rotational lines of the

1-0 gamma band in the ultraviolet were used to infer atmospheric

temperature profiles. The slant path intensity profiles exhibit

higher intensities than are predicted by a recent model and are in

good agreement with the NO profile obtained in the infrared during

the same Spacelab 1 mission.
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INTRODUCT ION

Nitric oxide is one of the main odd nitrogen forms in the upper

atmosphere, along with ground state atomic nitrogen, N(4S), and its

first excited state, N(2 D). The production of nitric oxide is mainly

from reactions involving atomic nitrogen and molecular oxygen (Norton

and Barth, 1970):

N(2D) + 02 NO + 0 [li

and

N(4S) + 02 NO + 0 C2]

Nitric oxide and atomic nitrogen are sinks for each other through the

reaction:

NO+ N(4S) N2 +0 3]

Nitric oxide is also an important sink for the destruction of ozone

through the reaction (Crutzen, 1979):

0 + NO a, NO2  42

The photodissociation of NO by Lyman-Alpha radiation ano the charge

conversion of 0 to NO+ , ensure NO+ is the major ion in the D-region

of the ionosphere.

Since odd nitrogen plays an important part in the chemistry of

the upper atmosphere, measurements of nitric oxide concentrations are

highly significant in the testing of any chemical model (McCoy,

1983).

TI

*.*.*-*q
. . . . . . . . . . . . . . .



2

The temperature of the atmosphere and its variation with

altitude (see Figure 1) are major factors in determining the

properties of the atmosphere. The maxima in the temperature profile

are produced by selective absorption of energy by the atmosphere at

different wavelengths and altitudes. The nodes in the lower 100 km

of the atmosphere roughly divide the atmosphere into different layers

or spheres, each having its own atmospheric properties. Incoming

solar radiation (insolation) with wavelengths <3000 A do not reach

the earth's surface. Insolation in the wavelength range of 2000-

3000 A penetrates through the mesosphere into the upper portion of

the stratosphere before being absorbed by atmosphere constituents

(see Figure 1). Because of this atmosphere absorption, the best

platform to obtain spectrometric observations of NO is from space.

Measurements of the NO gamma bands in the earth's upper

atmosphere were first obtained in 1964 by rocket (Barth, 1964).

Since that time, vertical profiles of the 1-0 gamma band fluorescence

have been inferred from rocket and satellite measurements (Barth,

1964, 1966a, 1966b; Pearce, 1969; Meira, 1971; Rusch, 1973; McCoy,

1983; Frederich and Serafino, 1985).

Objective

The objective of this paper is to report on the NO 1-0 gamma

band intensities in the ultraviolet obtained from Spacelab 1. These

results will be compared to the latest theoretical global model of NO

concentrations (Gerard et al., 1984) and to measurements of NO in the

infrared obtained on the same Spacelab 1 mission (Laurent et al.,

1984). Atmospheric temperatures will be inferred by the rotational

lines of the 1-0 gamma band.



3

300 V

Thermosphere

A
o V -

E 200-

-00

- Mesopaus.-----

Troposphere

0 500 1000

Temperature (0 K)
V1

Figure 1. Temperature variations with altitude at middle
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Walker, 1972).%
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DATA ACQUISITION

Measurements of the NO gamma bands were taken from Spacelab 1,

flown on the space shuttle during its 10-day (28 November-7 December,

1983) mission by the Imaging Spectrometric Observatory (ISO). The

ISO is an array of 5 spectrometers, each covering a portion of the

wavelength range 300-12700 A, with 3-6 A resolution. Each

spectrometer works in parallel, obtaining its spectra in 20 steps of
0

approximately 200 A each. The ISO has been described in detail

elsewhere (Torr et al., 1982).

On the last day of the mission, the shuttle was oriented to

allow continuous limb scanning from its altitude of 250 km to a

tangent ray height between 95-115 km (see Figure 2). Each spectral

cycle was obtained over a 10-minute period, with the shuttle's ground

track for the 8 continuous cycles shown in Figure 3. A summary of

relevant paratmeters can be found in Table 1. Due to system

problems, no data was available for cycle 3.

The ISO is also capable of simultaneous spatial as well as

spectral imaging depending on the orientation of the entrance slit.

With a field of view of 0.650 x 0.0070 and the slit oriented with the

long dimension perpendicular to the limb, a vertical atmospheric

segment of approximately 16 km can be viewed with 2 km resolution.

The ability of the ISO to produce spatial as well as spectral imaging

makes it unique in its own right. The data received by the ground

station was in a compressed mode, i.e., the eight spatial lines (e km

resolution) comprising the 16 km height profile were summed into a

F-.
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Table 1. Summary of relevant parameters for the spectral cycles

Geographic Geographic Solar zenith Local Tangent ray
Cycle # latitude longitude angle time height (km)

1 570N 115 0 E 79.50 11h56 105.7

2 370N 175 0E 84.80 16h07 103.7

4 310S 222 0 E 98.90 19h36 106.0

5 560S 2690E 100.80 22h54 115.4

6 450S 333 0 E 97.10 3h22 111.6

7 120 S 30E 89.80 5h31 99.6

8 220N 240E 82.60 7h07 95.4

one-dimensional profile centered at the tangent ray height. A soft-

ware program, SPY, was developed by the Imaging Spectrometric

Laboratory staff to separate the one-dimensional data into eight

spatial lines, producing the spatial profiles. The three cycles

viewing the lowest tangent altitudes, 8, 7, and 2, were chosen for

analysis to gain a better understanding of nitric oxice in the

mesosphere.

%.....
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RESULTS AND DISCUSSION

Temperature

The rotational lines of the,1-0 gamma bands are temperature

dependent and can be used to infer atmospheric temperature. Figure 4

shows the effect different rotational temperatures have on the

rotational lines of the 1-0 band using a synthetic spectral model

(Whiting et al., 1969). By inputing different temperatures, the

synthetic spectrum was modeled to match the well defined rotational

lines of the 1-0 band (Figure 5) to infer the rotational temperature

of the band, and hence, the atmospheric temperature. This technique

was used on cycles 2, 7, and 8, to obtain the temperature profiles

shown in Figure 6. Each cycle clearly showed a bounded mesopause

with the altitude of the mesopause varying with latitude.

Intensity,

The large altitude, hemisphere and latitudinal variations in the

1-0 NO gamma band are shown in Figure 7. Each 1-0 band is one

dimensional and centered at the tangent ray heignt which is indicatea

in the figure. Cycle 2 clearly shows the larger amount of NO present

in the sub-auroral region than at mid-latitudes (Rusch and Barth,

1975). The one-dimensional spectra for cycles 8, 7, and 2 in the

1850-2300 A wavelength ranges are shown in Figure 8.

The ISO's capability to simultaneously obtain spatial as well as

spectral data is clearly demonstrated in Figures 9 and 10. The

figures show the 2 km spatial resolution of which the ISO is capable

in the 1850-2300 A wavelength range.

,'* 4
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Slant path intensity measurements for the 1-0 gamma band were

obtained by integrating over the relevant wavelengths to produce the

total intensity at each height. The spatial lines of the 1-0 band

that were integrated are clearly shown in Figure 11, with their slant

path intensity profiles shown in Figure 12.

The theoretical model used in this report was developed by

Gerard et al. (1984). It is a two-dimensional model of N(2 D), N(4S)

and NO to investigate the global distribution of these species for i

December solstice conditions during solar cycle minimum. Figure 13

shows the calculated zonally averaged densities of NO for solar and

particle-induced ionization during quiet and moderately disturbed

auroral conditions (Gerard et al., 1984). Symmetry between the

hemispheres was assumed, and the data for the southern hemisphere

winter were used for the northern hemisphere winter.

The data obtained by the ISO were acquired for a slant path

viewing geometry with tangent ray heights between 95-115 km,

depending on the cycle. In order to compare the measured and

theoretical intensities, the theoretical volume emission rate

profiles were integrated along the correct geometrical path to obtain

the slant path surface brightness. The g-factor, 7.69E-6 photons

sec -1 (Barth, 1965), was used to calculate the volume emission rate.

The corresponding theoretical profiles, quiet and disturbed, for each

cycle's latitude were plotted along with the ISO's measured profile.

Cycles 8, 7 and 2 are shown in Figures 14, 15, and 16, respectively.

The Kp index is a measure of the earth's geomagnetic activity.
I"

On December 7, 1983, the Kp total index for the day was 32 (Coffey,

1984), making it the fifth most disturbed day of the month. With

... . . . . . . .. - .- ,-S ~. . .
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this in mind, the best agreement between actual data and theory

occurred in cycle 7 (Figure 15). Cycles 8 and 2 clearly suggest much

more NO than theory. The largest deviation, a factor of 8, occurred

at 100 km in cycle 8, using the disturbed theoretical profiles for

each cycle.

The large disparity between the slant path theoretical profiles

and the ISO data, especially cycle 8, indicate either the conversion

to slant path intensity is incorrect, or there is more NO than theory

predicts. A quick computational check of the conversion was

acomplished using the following equation (M. Torr, personal

communication):

112~
Isp= g [NO] H (27rR/H) 1"2  [5-

where I is the slant path intensity, g is the g-factor, [NO] is the
sp_

concentration of NO, H is the scale height (9 km), and R is the

radius of the earth. Using 100 km data for cycle 8, [NO] = 1.35E07

cm-3 (from Figure 13), one obtains get a calculated slant path

intensity of 6.24E03 rayleighs. The computer program result from

Figure 14 shows approximately 1.08E04 rayleighs, less than twice the

value from equation [5], indicating the conversion to slant path is

done correctly.

During the same Spacelab I mission, infrared spectra of the

earth's limb were obtained in absorption using the rising or setting

sun as a source. On December 1, measurements of NO (1915 cm-1) were

obtained from 20 to 100 km at 66.89S, 118.1W (Laurent et al., 1984).

Previous NO profiles (Meira, 1971, Baker et al., 1977; Tohmatsu and

Iwagami, 1975) showed a clear minimum (106-107 cm- 1 ) at approximately



- - " , . S

24

85 km while Laurent's profile showed a clear maximum near 90 km (108

cm - 3 ) (see Figure 17). The vertical infrared NO profile from

Spacelab 1 is shown in Figure 18 along with the vertical theoretical .- '
oV.

concentrations of the model for the 'ame latitude. The measured and A. V

theoretical values agreed quite well near 100 km. Theory predicted

less than actual data below 90 km. The Kp total index for December 1

was 22+ (Coffey, 1984) which related to an average quiet day. The

largest deviation was a factor of 75 using the quiet theoretical

profile at 80 km.

Two different volume emission rate profiles were used from 100

to 250 km to convert the infrared data to slant path intensity.

Gerard's quiet theoretical profile matched the infrared data at 100

km and was used for one slant path profile with a thermospheric code

developed by the Imaging Spectrometric Laboratory staff used for the

other. The slant path intensity profiles are shown in Figure 19

along with the 1-0 band profiles obtained from the ISO. The

conversion of the vertical volume emission rate profiles to slant

path intensity was very sensitive to the vertical volume emission

rate profiles. Although the same vertical profile was used from 80-

100 km, the thermospheric code showed less than the model in the

slant path.

Spectral Analysis

The synthetic spectral model was used to model the ISO data from

cycle 2 at 102 km. The relative intensities of each band head (0-0,

1-0, 2-0, 3-0, 4-0) were scaled to match the data, with relative

intensities of the other bands computed by the model using their

Franck-Condon factors. The Franck-Condon factor is the probability
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of a molecule radiating to a specific uppper level. Figure 20a

shows the ISO data, with Figure 20b showing the synthetic spectrum.

The two spectra are in good agreement except for the 4 -0 and 1-1

bands. There is an underlying 2-2 NO delta band accounting for the

higher ISO intensity for the 4-0 band. The synthetic spectrum showed

approximately half the relative intensity of the ISO's 1-1 band,

indicating a problem with the 1-0 band.
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& CONCLUS IONS

The temperature profiles (Figure 6) obtained from the ISO data

were warmer than the standard atmospheric profile (see Figure 1) but

consistent with their latitude and altitude. Cycles 7 and 8 showed a

gradual decrease in temperature before the rapid increase at the

mesopause was reached. Cycle 2 showed a fairly isothermal layer

below the mesopause. I
The vertical profile obtained in the infrared showed a much

higher concentration of NO in the mesosphere than previously

reported. The same results were anticipated here, but the differences

in latitude, altitude, and the sensitivity of converting data to

slant path intensities made it difficult to make an objective

statement. Both sets of data showed higher slant path intensity

profiles than the most recent theoretical model predicteo for their

respective latitudes.

The synthetic spectrum matched the ISO data quite well with the

exception of the 1-1 band. For the model to match the intensity of

the 1-1 band, the relative intensity of the 1-0 band would have to

increase by approximately one-third. If this is the case, the ISO

did not see all the NO 1-0 band in the atmosphere. One possible

reason for the lesser intensity of the 1-0 band could be the

absorption of the 1-0 band in the atmosphere. This could account for

the fact the infrared data obtained from Spacelab 1 showed higher

concentrations of NO in the mesosphere than previously reported.

Study of this possibility is suggested for further research.

z . ° .
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